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ABSTRACT

Principal component analysis (PCA), also known as empirical orthogonal function (EOF) analysis, is

widely used for compression of high-dimensional datasets in such applications as climate diagnostics and

seasonal forecasting. A critical question when using this method is the number of modes, representing

meaningful signal, to retain. The resampling-based ‘‘Rule N’’ method attempts to address the question of

PCA truncation in a statistically principled manner. However, it is only valid for the leading (largest) ei-

genvalue, because it fails to condition the hypothesis tests for subsequent (smaller) eigenvalues on the results

of previous tests. This paper draws on several relatively recent statistical results to construct a hypothesis-test-

based truncation rule that accounts at each stage for the magnitudes of the larger eigenvalues. The perfor-

mance of the method is demonstrated in an artificial data setting and illustrated with a real-data example.

1. Introduction

Principal component analysis (PCA), also known as

empirical orthogonal function (EOF) analysis, has a

long history of use in meteorology, climatology, and

oceanography since its introduction into this literature

by Obukhov (1947), Lorenz (1956), and Davis (1976).

The method often is very effective at compressing high-

dimensional datasets by producing a relatively small

number of uncorrelated derived variables, while pre-

serving much of the original variance. The computations

involve extracting eigenvalue–eigenvector pairs from

the covariance matrix of the data under analysis, and

projecting those data onto the eigenvectors corre-

sponding to the largest eigenvalues.

A key issue in the use of PCA is choice of the number

of these derived variables to retain in the compressed

dataset, with this truncation point generally chosen on

the basis of the magnitudes of the sample eigenvalues. A

wide variety of methods have been proposed to guide

this process (Preisendorfer and Mobley 1988; Jolliffe

2002; Wilks 2011), although these methods often dis-

agree and no consensus has developed regarding the

most appropriate approach. Some authors recommend

against use of these selection rules at all (von Storch and

Zwiers 1999).

Typically the choice of the truncation point is framed

in terms of separating hypothesized ‘‘signal’’ and

‘‘noise’’ subspaces of the data space. It is usually as-

sumed that the noise is relatively weak and uncorrelated

across the original variables, and so will be represented

by a sequence of higher-order generating-process ei-

genvalues of equal magnitude. Although this is a rea-

sonable viewpoint for many applications, and will be

assumed in this paper, the definition of what is consid-

ered as signal may depend on the scientific context. For

example, if the scientific interest focuses on one or a few

large-scale processes, some portion of the noise may be

spatially correlated, and represented by intermediate

eigenvalues. Alternatively, real physical processes oc-

curring at unresolved scales may be aliased as noise onto

the resolved scales, and make contributions across the

low-variance eigenvalues.

Rule N (Preisendorfer et al. 1981; Overland and

Preisendorfer 1982) is a popular method for PCA trun-

cation that assumes the noise subspace is represented

by a sequence of trailing eigenvalues of equal magni-

tude. It is based on statistical hypothesis testing ideas,

and it continues to be used widely in climatology and

oceanography (e.g., Pérez-Hernández and Joyce 2014;

Ortega et al. 2015; Wang et al. 2015; Feng et al. 2016).

However, Rule N is only strictly valid for the hypothesis

test involving the leading eigenvalue, which amounts to
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testing the null hypothesis that the signal subspace is

null. The result is that Rule N is usually conservative,

meaning that it retains too few components.

This paper proposes a modification of Rule N for PCA

truncation that is based on several relatively recent results

from the statistics literature. Section 2 reviews Rule N and

describes the proposed modification, section 3 compares

the performance of the two methods in synthetic-data

settings where the correct truncation points are known,

section 4 illustrates themethods in a small real-data setting,

and section 5 concludes the paper.

2. Testing a sequence of sample eigenvalues

The underlying assumption in the following is that the

multivariate data space can be partitioned into a

k-dimensional signal subspace and a remaining noise

subspace. The eigenvalues corresponding to eigenvec-

tors spanning these subspaces are
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whereM is the dimension of the data space. These data-

generating-process (‘‘population’’) eigenvalues are es-

timated in PCA by extracting the sample eigenvalues

of a covariancematrix, which has been calculated from a

sample of n data vectors of dimension M. In a typical

climatological application, M is the number of spatial

locations (often grid points), and n is the number of

temporal observations.

The goal of Rule N (Preisendorfer et al. 1981,

Overland and Preisendorfer 1982) is to estimate the

dimension of the signal subspace, k, by comparing the

members of an observed sample eigenvalue sequence

l̂k, k 5 1, 2, 3, . . . , to a high quantile (e.g., the 95th

percentile) of their respective sampling distributions.

These distributions are estimated from a large number

of PCAs for covariance matrices that have been com-

puted from uncorrelated (usually Gaussian) random

data vectors having the same sample size and dimension.

In order that the test and synthetic sample eigenvalues

are scaled comparably, both are normalized by the av-

erage of the nonzero sample eigenvalues:
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where Nrank 5 min(n 2 1, M) is the number of nonzero

sample eigenvalues. The name ‘‘Rule N’’ refers to the

normalization of the sample eigenvalue estimates by the

average eigenvalue in the denominator of Eq. (2)

(Preisendorfer et al. 1981).

Using Rule N involves examining a sequence of hy-

pothesis tests with null hypotheses Hk, specifying the

propositions

H
k
: fl
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2 1, (3)

that is, that following the assumption specified by Eq. (1)

the trailing Nrank 2 k 1 1 eigenvalues represent noise.

The Rule N test statistic for each Hk is ~‘k, which is

compared to the collection of Monte Carlo realizations

for the corresponding normalized eigenvalue. The null

hypothesis Hk represents the proposition that k , k, so

that rejecting Hk indicates k $ k. The estimated trun-

cation point is then taken to be the eigenvalue index k

that is one less than that of the first sample eigenvalue

not regarded as statistically significant:

k̂5min(k 2 f1, 2, . . . ,N
rank

2 1g: p
k
.a

crit
)21, (4)

where acrit is the chosen test level (often 0.05). For Rule

N, pk is estimated as the fraction of the scaled [according

to Eq. (2)] synthetic noise eigenvalues with index k that

are larger than the current test statistic ~‘k. Thus, for

example, if the first null hypothesis H1 is not rejected

because p1 . acrit, Eq. (4) specifies that k̂ 5 0, with the

corresponding inference being that the underlying

dataset is comprised entirely of noise.

Although it is conceptually attractive, the primary

problem with Rule N is that, having rejected the first null

hypothesis H1 that l1 corresponds to noise (because ~‘1 is

unusually large compared to its Monte Carlo critical

value), the remaining tests (for H2, H3 . . .) are incorrect.

The reason is that the total remaining variance in the

observed sample eigenvalues l̂k for k.1 will be too small

relative to the correspondingMonteCarlo distributions to

which they are being compared. That is, the Rule N hy-

potheses tests beyond the first null hypothesis H1 do not

account for previous significant results, because those re-

sults will imply a greater variance fraction represented by

the leading eigenvalues than is assumed by the subsequent

Monte Carlo distributions. The consequence is that the

Rule N test is overly conservative, tending to conclude

that k̂ , k (Preisendorfer and Mobley 1988).

An improved hypothesis-testing-based approach to

estimating the dimension of the signal subspace in PCA

can be constructed by combining several relatively re-

cent statistical results. Johnstone (2001) has shown that

the sampling distribution of the leading eigenvalue of a

sample covariance matrix derived from uncorrelated

random variates, when appropriately scaled, follows

a distribution proposed by Tracy and Widom (1996),

which will be defined later. For example, over many

Monte Carlo simulations, a histogram of appropriately

3050 JOURNAL OF CL IMATE VOLUME 29



scaled multiple random realizations for ~‘1 [Eq. (2)] from

uncorrelated noise data will estimate the Tracy–Widom

distribution.

Kritchman and Nadler (2008) show that if k 5 1, the

(appropriately scaled) sampling distribution of l̂2 also

follows the Tracy–Widom distribution, if both n and M

are large. Following Faber et al. (1994), this sampling

distribution for l̂2 will be the same as the sampling dis-

tribution for l̂1 calculated from covariance matrices

formed from vectors of uncorrelated noise data having

dimension M2 5 M 2 1, with sample size n2 5 n 2 1.

Kritchman and Nadler (2008) conjecture that their re-

sult generalizes for the sampling distributions of l̂k11,

k 5 2, 3, . . . , when k 5 k, in which case the relevant

Tracy–Widom data dimension and sample size would be

Mk 5 M 2 k 1 1 and nk 5 n 2 k 1 1.

Because a sequence of tests based on these results will

relate only to those eigenvalues regarded as reflecting

noise according to the current null hypothesis [Eq. (3)],

the appropriate normalization of a raw sample eigen-

value is with respect to the average over these trailing

eigenvalues:
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Thus ~‘1 5 ‘1*, but for k. 1 the normalization in Eq. (5) is

unaffected by the magnitudes of the leading sample ei-

genvalues l̂m, m , k, so that ~‘k , ‘k* for k . 1.

The Tracy–Widom distribution does not have a

closed-form analytic representation, and the numerics

required for working with it are elaborate. However,

Chiani (2014) shows that the Tracy–Widom distribution

can be well approximated by a Pearson-III (i.e., shifted

gamma) distribution, the probability density function

for which is
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where G(d) denotes the gamma function. Correspon-

dence with the Tracy–Widom distribution is achieved

when the shape, scale, and shift parameters of the

Pearson-III distribution are, respectively,

a5 46:4, (7a)

b
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and

z
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m
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Here the Tracy–Widom location and scale parameters

are
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As before,Mk 5 M 2 k 1 1 and nk 5 n 2 k 1 1 for the

null hypothesis Hk.

Under a null hypothesis Hk the quantity ‘k* 2 zk is

thus a random draw from an ordinary (two parameter)

gamma distribution with shape parameter a [Eq. (7a)]

and scale parameter bk [Eq. (7b)]. The estimated dimen-

sion of the signal subspace k̂ is then specified by Eq. (4),

where the quantity pk corresponds to probability in this

distribution (i.e., the right-tail area) above ‘k* 2 zk.

The Pearson-III approximation to the Tracy–Widom

distribution is quite good, especially for the right-tail

quantiles that are of primary interest in the present

setting (Chiani 2014). The correspondence in the left tail

is less good, due in part to the fact that a Tracy–Widom

variable can in principle be any real number, whereas

Eq. (6) requires ‘k* . zk. As a consequence, occasio-

nally a sample value of ‘k*2 zkmay be negative, in which

case the interpretation should be that the corresponding

pk ’ 1.

Since the applicability of the Tracy–Widom distribu-

tion assumes that both n andM are large, it is of interest

to examine its accuracy for the small tomoderate sample

size and/or data dimensions that are typically encoun-

tered. Table 1 shows relative specification error (%)

for 95th percentiles computed using the Pearson-III

TABLE 1. Percent error of 95th percentiles of Pearson-III ap-

proximations to Tracy–Widom distributions, relative to 10 000-

member Monte Carlo counterparts.

Mk

nk 50 100 200 500 1000 2000

10 7.42 4.95 3.70 2.31 1.74 1.22

20 4.19 2.89 2.18 1.38 1.07 0.74

50 2.30 1.70 1.19 0.80 0.53 0.37

100 0.23 1.09 0.64 0.43 0.29 0.33

200 0.39 0.03 0.37 0.33 0.19 0.17

500 0.23 0.14 0.07 0.15 0.14 0.09

1000 0.20 0.11 0.00 0.07 0.05 0.07
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approximation to Tracy–Widom distributions, relative

to the corresponding empirical distributions obtained

through Monte Carlo simulation using the method de-

scribed in the appendix. The positive tabulated values

indicate that Tracy–Widom distributions overspecify

this quantile, which leads to conservatism in the hy-

pothesis tests (i.e., when k 5 k 2 1, the null hypothesis

Hk is rejected less frequently that the nominal acrit 5
0.05). However, this conservatism is slight unless either

the sample size or the data dimension is fairly small, and

the errors will be acceptable for many climatological

applications. Similar results (not shown) are exhibited

for other high quantiles. Fortunately, when either the

sample size or data dimension is relatively small, the

relevant reference distributions can be derived fairly

quickly through Monte Carlo simulations, because (as

outlined in the appendix) only the first sample eigen-

values l̂1 need to be computed.

3. Performance in synthetic-data settings

In this section the performance of the Tracy–Widom-

based modification to Rule N is investigated in

synthetic-data settings, for which the correct k can be

known in advance. The data dimension is taken to be

M5 1500, which is typical of the numbers of grid points in

climate studies (e.g., Wallace and Gutzler 1981; Barnston

1994; Wilks 2008), and results will be shown for sample

sizes n of 20, 50, and 100. Since n,,M these simulations

are challenging settings for estimating PC truncations.

Results will be shown for signal subspace dimensions, k,

of 5, 9, 17, 33, and 65 (provided k , n); signal-to-noise

(S/N) ratios

S/N5 �
k

k51

l
k= �

M

k5k11

l
k

(9)

of 1 (half of total variance in the signal eigenvalues) and

9 (90% of total variance in the signal eigenvalues); and

ratio of largest to smallest signal eigenvalues l1/lk 5 8,

with intermediate signal eigenvalues varying linearly

between the two extremes (results change little for

values of this ratio in the range 2 through 32).

A large number of trials are computed for each combi-

nation of parameter values. In each trial, n synthetic

M-dimensional data vectors xi have been generated using

FIG. 1. Relative frequencies of estimated signal dimension, by Rule N (dashed) and the Tracy–Widommodification (solid). Correct signal

dimensions are indicated by the red lines. Parameter combination indicated by the heavy box outline pertains to results in Fig. 2.
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where L1/2 5 diag (Ol1, Ol2, . . . Olk, snoise, snoise, . . .

snoise), fromwhich synthetic sample covariancematrices

and their n 2 1 nonzero eigenvalues were computed.

Each of the M columns of the (M 3 M) matrix E

represents a generating-process eigenvector (i.e., the

basis vectors estimated by the EOFs), theM elements of

the diagonal matrix L1/2 are the square roots of the

signal and noise eigenvalues in Eq. (1), and each zi is an

M-dimensional realization of independent standard

Gaussian random variates. Although in a physically real

setting the k signal eigenvectors would usually exhibit

larger spatial scales than the M–k noise eigenvectors,

here all M of these vectors have been generated

through a Gram–Schmidt orthonormalization of ran-

dom directions in M space, which does not affect the

results for estimation of the signal dimensions.

Figure 1 shows frequencies of estimated signal dimen-

sions for the various parameter combinations according

to Eq. (4), for Rule N (dashed) and the Tracy–Widom

modification (solid histograms), over 1000 trials for each

parameter combination. The vertical red lines in each

panel locate the correct specification, k̂ 5 k. For k 5 5

(leftmost column) both methods perform well, although

for n5 20 the undue conservatism of Rule N begins to be

evident. For the four larger values of k, Rule N chooses k̂

values that aremuch too small, whereas the Tracy–Widom

modification yields excellent results except when k is a

large fraction of n and the signal-to-noise ratio is low. In

these cases (n5 20 and k5 17, n5 50 and k5 33, n5 100

and k 5 65) the performance of Rule N is even worse.

Only a small portion of the conservatism of the Tracy–

Widom k̂ estimates in these low n/k trials is due to use of

the parametric distribution: the average k̂ is larger by ap-

proximately 0.5 when the Monte Carlo empirical distri-

butions for the k 5 (k 1 1)th (i.e., first noise) eigenvalue

(used as the reference ‘‘truth’’ in Table 1) are used to

construct each hypothesis test.

The Tracy–Widom modification of Rule N exhibits

good performance even though no adjustments have

been made to account for the effect of computing the

sequence of multiple hypothesis tests specified by

Eq. (4). Figure 2 illustrates that this result is a fortuitous

consequence of the nonapplicability of the Tracy–

Widom distribution for describing the sampling varia-

tion of the k5 (k1 2)th (second noise) eigenvalue. This

figure pertains to the parameter combination n 5 50,

k 5 9, and S/N 5 1, which is indicated by the heavy box

outline in Fig. 1, but is representative of the other pa-

rameter combinations also. Figure 2a shows the relative

frequencies of p10 [i.e., the test p value for the first noise

eigenvalue in Eq. (4)] over 10 000 trials, when using the

empirical distribution of p10 (red dashed histograms)

and the Tracy–Widom approximation to it (black solid

histograms). The thin horizontal line located at acrit 5
0.05 locates ideal behavior for this histogram, and the

close approximation of the dashed histogram to this

ideal behavior supports the conjecture of Kritchman and

Nadler (2008) noted in section 2. The height of the

leftmost bar in Fig. 2a reflects the achieved test size

when acrit 5 0.05, and shows that the actual test level is

very close to acrit 5 0.05 when the empirical distribution

of ‘10* is used, and that only about 3% of these true null

hypotheses are incorrectly rejected when the tests are

computed using the Tracy–Widom distribution. This

slight test conservatism is consistent with the results

shown in Table 1.

Figure 2b shows the corresponding relative frequen-

cies for p11, which pertain to the test statistic ‘11*, when

k 5 9. For both the empirical and Tracy–Widom dis-

tributions, the probability that the true null hypothesis

H11 is rejected is vanishingly small. Similar plots for p12,

p13, p14, etc. (not shown) exhibit even more extreme neg-

ative skewness. Accordingly, even though Eq. (4) specifies

a sequence of multiple tests, if the first true null hypoth-

esis Hk11 is erroneously rejected the probabilities are

FIG. 2. Relative frequencies of p values computed using Monte

Carlo (red dashed) and Tracy–Widom (black solid) reference dis-

tributions for (a) p10 for theH10 null hypothesis, and (b) p11 for the

H11 null hypothesis, when k 5 9; with n 5 50, and S/N 5 1. Light

horizontal lines locate ideal behavior.
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vanishingly small that Hk12, Hk13, etc., will also be re-

jected, obviating the multiple-testing problem in this

setting.

4. Real-data example

Overland and Preisendorfer (1982) illustrated use of

Rule N with a PCA relating to numbers of cyclones

transiting anM5 56-member network of grid cells in the

Bering Sea duringOctober–February, during a period of

n5 23winters. Their results pertaining to the covariance

matrix of cyclone counts are displayed graphically in

Fig. 3a. Here the five leading sample eigenvalues, scaled

according to Eq. (2) are plotted, together with the 95th

percentile of the Monte Carlo distribution for these

statistics. Accordingly ~‘k points above the curve indicate

pk # acrit 5 0.05, so that Eq. (4) yields k̂ 5 2. Overland

and Preisendorfer (1982) concluded that only the two

leading eigenvalues are statistically distinguishable

from noise.

Figure 3b shows the corresponding result whenEq. (4)

is evaluated using Tracy–Widom distributions (dashed

curve), and 10 000-member Monte Carlo distributions

(solid curve) for ‘k* [Eq. (5)]. Table 1 indicates that for

this small sample size and data dimension, the Tracy–

Widom distribution overestimates the 95th percentile

for the pure-noise ‘k* statistics by approximately 4%, and

so yields a test that is more conservative than the nom-

inal acrit 5 0.05. In Fig. 3b, Eq. (4) yields k̂ 5 2 when

computing the pk values from Tracy–Widom distributions,

but k̂5 4 when using the directMonte Carlo distributions.

Because n and M are relatively small these Monte Carlo

distributions can be computed very quickly, as outlined in

the appendix.

5. Conclusions

This paper has proposed a modification of the popular

Rule N for PCA truncation, based on the Tracy–Widom

distribution for the largest noise eigenvalue of a sample

covariance matrix. This new method improves upon

Rule N because it accounts at each stage of the sequence

of hypothesis tests for the results of previous tests in the

sequence.

Both Rule N and the proposed modification assume

the particular separation of signal and noise subspaces

expressed in Eq. (1). Experiments using synthetic data

conforming to this assumption show excellent results

unless the dimension of the signal subspace is a large

fraction of the sample size and the signal-to-noise ratio is

relatively small, and even under these circumstances the

proposedmodification strongly outperforms the original

Rule N. However, both of these methods may perform

poorly in settings where the signal and noise subspaces

are defined differently.

Even though the proposed procedure is based on

a sequence of hypothesis tests, it is not necessary to

account for this test multiplicity because the bias of

Tracy–Widom distributions for other than the larg-

est noise eigenvalues prevents the procedure from

FIG. 3. Illustration of the use of (a) RuleN and (b) themodifiedRuleN, for theBering Sea cyclone data ofOverland

and Preisendorfer (1982).
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greatly overestimating the dimension of the signal

subspace.

The Tracy–Widom distribution provides a good rep-

resentation for the random variations of the leading

noise eigenvalue when sample size and data dimension

are bothmoderate to large.When either or both of these

parameters are relatively small the Tracy–Widom dis-

tribution yields conservative tests and truncation points;

that is, too few of the leading eigenvalues are regarded

as representing signal, on average, which will lead to

concluding that some signal modes are noise. In this

circumstance the appropriate reference distributions

can be easily and quickly generated by Monte Carlo

methods, as described in the appendix.

The results presented here were based on underlying

Gaussian-distributed data, but the sampling distribu-

tions of sample covariance-matrix eigenvalues are very

similar for uniform, or random sign (61 with equal

probability) data (Faber et al. 1994). However, if sensi-

tivity to non-Gaussian data is suspected, the appropri-

ate reference distributions can again be derived using

Monte Carlo methods as described in the appendix.
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APPENDIX

Monte Carlo Computation of the Reference
Distributions

A different sampling distribution must be computed

for each null hypothesis Hk [Eq. (3)], k 5 1, 2, 3, . . . ,

pertaining to the largest sample eigenvalue of a pure

noise covariance matrix formed from random data of

dimension Mk, with sample size nk, where Mk 5 M 2
k 1 1 and nk 5 n 2 k 1 1. If either the sample size n or

the data dimension M is relatively small, the Tracy–

Widom distribution may represent inadequately the

sampling distribution of the largest noise eigenvalue, as

indicated in Table 1. In this case discrete approximations

to the appropriate distributions can be computed rela-

tively cheaply using the power method (e.g., Golub and

Van Loan 1983), because only the leading eigenvalue

rather than all of the nonzero eigenvalues of each sam-

ple covariance matrix needs to be computed. This ap-

proach can also be used if the effects of non-Gaussian

data are suspected to be significant, but with possibly

large computational expense if the smaller of nk andMk

is not relatively small.

Each Monte Carlo iteration (of perhaps 1000) begins

with a (nk 3 Mk) matrix X0 of uncorrelated data anom-

alies (sample means of each of the Mk columns have

been subtracted from the nk values in that column).

These underlying data may be random numbers from a

Gaussian or other distribution, or bootstrapped samples

from an actual dataset. A sample noise covariance ma-

trix S is then formed as

S
(Mk3Mk)

5
1

n
k
2 1

X0TX0 if n
k
.M

k
(A1a)

or

S
(nk3nk)

5
1

n
k
2 1

X0X0T if n
k
#M

k
. (A1b)

Because the nonzero eigenvalues of Eqs. (A1a) and

(A1b) are the same (e.g., von Storch and Zwiers 1999,

p. 300;Wilks 2011, p. 554), the computations can be greatly

reduced using Eq. (A1b) in the common circumstance

that n ,, M. Because of the normalization in Eq. (5),

the division by nk2 1 is not actually necessary. Note that

Eq. (A1b) does not describe a ‘‘T-mode’’ analysis

(Compagnucci and Richman 2008), because the anom-

alies in X0 are computed by subtracting the M column

means of X, and not the n row means.

The powermethod (e.g., Golub andVan Loan 1983) is

then used to extract the leading eigenvalue l1 of S for

the current iteration. For a given value of k, these

leading noise eigenvalues collectively compose the dis-

crete Monte Carlo approximation to the desired distri-

bution. Beginning with an arbitrary initial guess for the

leading eigenvector e, with jjejj 5 1, the algorithm pro-

ceeds by iterating until convergence:

v5Se , (A2a)

l
1
5 kvk , (A2b)

e5 v/l
1
. (A2c)

Here v is an intermediate storage vector, and jjvjj in-
dicates its Euclidean length. After the first Monte Carlo

evaluation it is convenient to begin by taking e as the

final value from the previous cycle.
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